Thursday 11 December 2014

Ask Yourself : What do you know about MEAT ?



Of all the foods that we obtain from animals and plants, meat has always been the most highly prized. The sources of that prestige lie deep in human nature. Our primate ancestors lived almost exclusively on plant foods until 2 million years ago, when the changing African climate and diminishing vegetation led them to scavenge animal carcasses. Animal flesh and fatty bone marrow are more concentrated sources of food energy and tissue-building protein than nearly any plant food. They helped feed the physical enlargement of the brain that marked the evolution of early hominids into humans. Later, meat was the food that made it possible for humans to migrate from Africa and thrive in cold regions of Europe and Asia, where plant foods were seasonally scarce or even absent.

Humans became active hunters around 100,000 years ago, and it’s vividly clear from cave paintings of wild cattle and horses that they saw their prey as an embodiment of strength and vitality. These same qualities came to be attributed to meat as well, and a successful hunt has long been the occasion for pride, gratitude, and celebratory feasting. Though we no longer depend on the hunt for meat, or on meat for survival, animal flesh remains the centerpiece of meals throughout much of the world. Paradoxically, meat is also the most widely avoided of major foods. In order to eat meat, we necessarily cause the death of other creatures that feel fear and pain, and whose flesh resembles our own.

Many people throughout history have found this a morally unacceptable price for our own nourishment and pleasure. The ethical argument against eating meat suggests that the same food that fueled the biological evolution of modern humans now holds us back from full humaneness. But the biological and historical influences on our eating habits have their own force. However culturally sophisticated we may be, humans are still omnivorous animals, and meat is a satisfying and nourishing food, an integral part of most food traditions.

Less philosophical questions, but more immediate ones for the cook, have been raised by the changing quality of meat over the last few decades. Thanks to the industrial drive toward greater efficiency, and consumer worries about animal fats, meat has been getting younger and leaner, and therefore more prone to end up dry and flavorless.

Traditional cooking methods don’t always serve modern meat well, and cooks need to know how to adjust them.
Our species eats just about everything that moves, from insects and snails to horses and whales. Though fish and shellfish are as much flesh foods as meat and poultry, their flesh is unusual in several ways.



EATING ANIMALS


By the word meat we mean the body tissues of animals that can be eaten as food, anything from frog legs to calf brains. We usually make a distinction between meats proper, muscle tissue whose function is to move some part of the animal, and organ meats, such innards as the liver, kidneys, intestine, and so on.

Outside Troy, Greek priests sacrifice cattle to Apollo:first they lifted back the heads of the victims,
slit their throats, skinned them and carved away the meat from the thighbones and wrapped them in fat,a double fold sliced clean and topped with strips of flesh.And the old man burned these over dried split wood and over the quarters poured out glistening wine while young men at his side held five-pronged forks.Once they had burned the bones and tasted the organs they cut the rest into pieces, pierced them with spits, roasted them to a turn and pulled them off the fire.
—Homer, Iliad, ca. 700 BCE


The structure of muscle tissue and meat. A piece of meat is composed of many individual muscle cells, or fibers. The fibers are in turn filled with many fibrils, which are assemblies of actin and myosin, the proteins of motion. When a muscle contracts, the filaments of actin and myosin slide past each other and decrease the overall length of the complex.

For neither is it proper that the altars of the gods should be defiled with murder, nor that food of this kind should be touched by men, as neither is it fit that men should eat one another.
—Porphyry, On Abstinence, ca. 300 CE



The Essence Of The Animal:Mobility From Muscle



What is it that makes a creature an animal? The word comes from an Indo-European root meaning “to breathe,” to move air in and out of the body. The definitive characteristic of animals is the power to move the body and nearby parts of the world. Most of our meats are muscles, the propulsive machinery that moves an animal across a meadow, or through the sky or sea. The job of any muscle is to shorten itself, or contract, when it receives the appropriate signal from the nervous system. A muscle is made up of long, thin cells, the muscle fibers, each of which is filled with two kinds of specialized, contractile protein filaments intertwined with each other. This packing of protein filaments is what makes meat such a rich nutritional source of protein.

An electrical impulse from the nerve associated with the muscle causes the protein filaments to slide past each other, and then lock together by means of cross-bridging, or forming bonds with each other. The change in relative position of the filaments shortens the muscle cell as a whole, and the cross bridges maintain the contraction by holding the filaments in place.

Portable Energy: Fat 


Like any machine, the muscle protein machine requires energy to run. Almost as important to animals as their propulsive machinery is an energy supply compact enough that it doesn't weigh them down and impede their movement. It turns out that fat packs twice as many calories into a given weight as carbohydrates do. This is why mobile animals store up energy almost exclusively in fat, and unlike stationary plants, are rich rather than starchy.

Because fat is critical to animal life, most animals are able to take advantage of abundant food by laying down large stores of fat. Many species, from insects to fish to birds to mammals, gorge themselves in preparation for migration, breeding, or surviving seasonal scarcity. Some migratory birds put on 50% of their lean weight in fat
in just a few weeks, then fly 3,000 to 4,000 kilometers from the northeast United States to South America without refueling. In seasonally cold parts of the world, fattening has been part of the resonance of autumn, the time when wild game animals are at their plumpest and most appealing, and when humans practice their cultural version of fattening, the harvest and storing of crops that will see them through winter’s scarcity.

Humans have long exploited the fattening ability of our meat animals by overfeeding them before slaughter, to make them more succulent and flavorful.




WHY DO PEOPLE LOVE MEAT?


If meat eating helped our species survive and then thrive across the globe, then it’s understandable why many peoples fell into the habit, and why meat would have a significant place in human culture and tradition. But the deepest satisfaction in eating meat probably comes from instinct and biology. Before we became creatures of culture, nutritional wisdom was built into our sensory system, our taste buds, odor receptors, and brain. Our taste buds in particular are designed to help us recognize and pursue important nutrients: we have receptors for essential salts, for energy-rich sugars, for amino acids, the building blocks of proteins, for energy-bearing molecules called nucleotides.

Raw meat triggers all these tastes, because muscle cells are relatively fragile, and because they’re biochemically very active. The cells in a plant leaf or seed, by contrast, are protected by tough cell walls that prevent much of their contents from being freed by chewing, and their protein and starch are locked up in inert storage granules.

Meat is thus mouth-filling in a way that few plant foods are. Its rich aroma when cooked comes from the same
biochemical complexity.

The meat of wild animals was by far the most concentrated natural source of protein and iron in the diet of our earliest human ancestors, and along with oily nuts, the most concentrated source of energy. (It’s also unsurpassed for several B vitamins.)

Thanks to the combination of meat, calcium-rich leaf foods, and a vigorous life, the early hunter-gatherers were robust, with strong skeletons, jaws, and teeth. When agriculture and settled life developed in the Middle East beginning 10,000 years ago, human diet and activity narrowed considerably.

Meats and vegetables were displaced from the diet of early farmers by easily grown starchy grains that are relatively poor in calcium, iron, and protein. With this and the higher prevalence of infectious disease caused by population growth and crowding, the rise of agriculture brought about a general decline in human stature, bone strength, and dental health.

A return to something like the robustness of the hunter-gatherers came to the industrialized world beginning late in the 19th century. This broad improvement in stature and life expectancy owed a great deal to improvements in medicine and especially public hygiene (water quality, waste treatment), but the growing nutritional contribution
of meat and milk also played an essential role.

LONG-TERM DISADVANTAGES

By the middle of the 20th century, we had a pretty good understanding of the nutritional requirements for day-to-day goodhealth. Most people in the West had plenty of food, and life expectancy had risen to seven or eight decades. Medical research then began to concentrate on the role of nutrition in the diseases that cut the good life short, mainly heart disease and cancer. And here meat and its strong appeal turned out to have a significant disadvantage: a diet high in meat is associated with a higher risk of developing heart disease and cancer.

In our postindustrial life of physical inactivity and essentially unlimited ability to indulge our taste for meat, meat’s otherwise valuable endowment of energy contributes to obesity, which increases the risk of various diseases. The saturated fats typical of meats raise blood cholesterol levels and can contribute to heart disease. And to the extent that meat displaces from our die the vegetables and fruits that help fight heart disease and cancer (p. 255), it increases our vulnerability to both.

It’s prudent, then, to temper our species’ infatuation with meat. It helped make us what we are, but now it can help unmake us. We should eat meat in moderation, and accompany it with the vegetables and fruits that complement its nutritional strengths and limitations.



Minimizing Toxic By-Products in Cooked Meats We should also prepare meat with care. Scientists have identified three families of chemicals created during meat preparation that damage DNA and cause cancers in laboratory animals, and that may increase our risk of developing cancer of the large intestine.



Heterocyclic Amines HCAs are formed at high temperatures by the reaction of minor meat components (creatine and creatinine) with amino acids. HCA production is generally greatest at the meat surface where the temperature is highest and the meat juices collect, and on meats that are grilled, broiled, or fried well done. Oven roasting leaves relatively few HCAs on the meat but large amounts in the pan drippings. Acid marinades reduce HCA production, as does cooking gently and aiming for a rare or medium doneness. Vegetables, fruits, and acidophilus bacteria appear to bind HCAs in the digestive tract and prevent them from causing damage.

Polycyclic Aromatic Hydrocarbons PAHs are created when nearly any organic material, including wood and fat, is heated to the point that it begins to burn. Cooking over a smoky wood fire therefore deposits PAHs from the wood on meat. A charcoal fire is largely smokeless, but will create PAHs from fat if the fat is allowed to fall and burn on the coals, or if the fat ignites on the meat surface itself. Small quantities of PAHs can also be formed during high-temperature frying. The PAH hazard can be minimized by grilling over wood only when it has been reduced to coals, by leaving the grill uncovered so that soot and vapors can dissipate, by avoiding fat flareups, and by eating smoked meats only rarely.

Nitrosamines are formed when nitrogen-containing groups on amino acids and related compounds combine with nitrite, a chemical that has been used for millennia in salt-cured meats, and that suppresses the bacterium that causes botulism. This reaction between amino acids and nitrites takes place both in our digestive system and in very hot frying pans. Nitrosamines are known to be powerful DNA-damaging chemicals, yet at present there’s no clear evidence that the nitrites in cured meats increase the risk of developing cancer. Still, it’s probably prudent to eat cured meats in moderation and cook them gently.


MEAT AND FOOD-BORNE INFECTIONS


Beyond the possibility that it may chip away at our longevity by contributing to heart disease and cancer, meat can also pose the much more immediate hazard of causing infection by disease microbes. This problem remains all too common. Bacterial Infection Exactly because it is a nutritious material, meat is especially vulnerable to colonization by microbes, mainly bacteria. And because animal skins and digestive tracts are rich reservoirs of bacteria, it’s inevitable that initially clean meat surfaces will be contaminated during slaughter and the removal of skin, feathers, and innards. The problem is magnified in standard mechanized operations, where carcasses are handled less carefully than they would be by skilled butchers, and where a single infected carcass is more likely to contaminate others. Most bacteria are harmless and simply spoil the meat by consuming its nutrients and eventually generating unpleasant smells and a slimy surface.

A number, however, can invade the cells of our digestive system, and produce toxins to destroy the host cells and defenses and to speed their getaway from the body. The two most prominent causes of serious meat-borne illness are Salmonella and E. coli.

Salmonella, a genus that includes more than 2,000 distinct bacterial types, causes more serious food-borne disease in Europe and North America than any other microbe, and appears to be on the rise. It’s a resilient group, adaptable to extremes of temperature, acidity, and moisture, and found in most if not all animals, including fish. In the United States it’s especially prevalent in poultry and eggs, apparently thanks to the practices of industrial-scale
poultry farming: recycling animal byproducts (feathers, viscera) as feed for the next generation of animals, and crowding the animals together in very close confinement, both of which favor the spread of the bacteria.
Salmonella often have no obvious effect on the animal carriers, but in humans can cause diarrhea and chronic infection in other parts of the body.

Escherichia coli is the collective name for many related strains of bacteria that are normal residents of the intestines of warm-blooded animals, including humans. But several strains are aliens, and if ingested will invade the cells of the digestive tract and cause illness. The most notorious E. coli, and the most dangerous, is a special strain called O157:H7 that causes bloody diarrhea and sometimes kidney failure, especially in children. In the United States, about a third of people diagnosed with E. coli O157:H7 need to be hospitalized, and about 5% die. E. coli O157:H7 is harbored in cattle, especially calves, and other animals, but has little if any effect on them.
Ground beef is by far the most common source of E. coli O157:H7 infection. Grinding mixes and spreads what may be only a small contaminated portion throughout the entire mass of meat.

Trichinosis is a disease caused by infection with the cysts of a small parasitic worm, Trichina spiralis. In the United States, trichinosis was long associated with under-cooked pork from pigs fed garbage that sometimes included infected rodents or other animals. Uncooked garbage was banned as pork feed in 1980, and since then the incidence of trichinosis in the United States has declined to fewer than ten cases annually. Most of these are not from pork, but from such game meats as bear, boar, and walrus.
For many years it was recommended that pork be cooked past well done to ensure the elimination of trichinae. It’s now known that a temperature of 137ºF/58ºC, a medium doneness, is sufficient to kill the parasite in meat; aiming for 150ºF/65ºC gives reasonable safety margin. Trichinae can also be eliminated by frozen storage for a period of at least 20 days at or lower than 5ºF/–15ºC.

“Mad cow disease” is the common name for bovine spongiform encephalopathy, BSE, a disease that slowly destroys the brains of cattle. It’s an especially worrisome disease because the agent of infection is a nonliving protein particle that cannot be destroyed by cooking, and that appears to cause a similar and fatal disease in people who eat infected beef. We still have a lot to learn about it. BSE originated in the early 1980s when cattle were fed by-products from sheep suffering from a brain disease called scrapie, whose cause appears to be a chemically stable protein aggregate called a prion. The sheep prions somehow adapted to their new host and began to cause brain disease in the cattle.

Humans are not susceptible to sheep scrapie. But there’s a mainly hereditary human brain disease similar to scrapie and caused by a similar prion; it is called Creutzfeldt-Jakob disease (CJD), typically strikes old people with loss of coordination and then dementia, and eventually kills them. In 1995 and 1996, ten relatively young Britons died from a new variant of CJD, and the prion agent found in their bodies was closely related to the BSE prion. This strongly suggests that humans can contract a devastating disease by eating meat from BSE-infected cattle. The cattle brain, spinal cord, and retina are thought to be the tissues in which prions are concentrated, but a 2004 report suggests that they may also be found in muscles and thus in common cuts of beef.


HORMONES
The manipulation of animal hormones is an ancient technology. Farmers have castrated male animals for thousands of years to make them more docile. Testicle removal not only prevents the production of sex hormones that stimulate aggressive behavior, but also turns out to favor the production of fat tissue over muscle. This is why steers and capons have long been preferred as meat animals over bulls and cocks. The modern preference for lean meat has led some producers to raise un-castrated animals, or to replace certain hormones in castrates. Several natural and synthetic hormones, including estrogen and testosterone, produce leaner, more muscular cattle more rapidly and on less feed. There is ongoing research into a variety of growth factors and other drugs that would help producers fine-tune the growth and proportions of fat to lean in cattle and other meat animals.

Currently, beef producers are allowed to treat meat cattle with six hormones in the United States, Canada, Australia, and New Zealand, but not in Europe. Hormone treatments were outlawed in the European Economic Community in 1989 in response to well-publicized abuses; a few Italian veal producers injected their calves with large quantities of the banned steroid DES, which ended up in bottled baby food and caused changes in the sexual organs of some infants. Laboratory studies indicate that meat from animals treated with allowed hormone levels contains only minute hormone residues, and that these residues are harmless when ingested by humans.

ANTIBIOTICS
Efficient industrial-scale meat production requires that large numbers of animals be raised in close confinement, a situation that favors the rapid spread of disease. In order to control animal pathogens, many producers routinely add antibiotics to their feed. This practice turns out to have the additional advantage of increasing growth rate and feed efficiency. Antibiotic residues in meat are minute and apparently insignificant. However, there’s good evidence that the use of antibiotics in livestock has encouraged the evolution of antibiotic-resistant campylobacter and salmonella bacteria, and that these bacteria have caused illness in U.S. consumers. Because resistant bacteria are more difficult to control, Europe and Japan restrict the use of antibiotics in animals.





THE STRUCTURE AND QUALITIES OF MEAT

Lean meat is made up of three basic materials: it’s about 75% water, 20% protein, and 3% fat. These materials are woven into three kinds of tissue. The main tissue is the mass of muscle cells, the long fibers that cause movement when they contract and relax. Surrounding the muscle fibers is the connective tissue, a kind of living glue that harnesses the fibers together and to the bones that they move. And interspersed among the fibers and connective tissue are groups of fat cells, which store fat as a source of energy for the muscle fibers. The qualities of meat—its texture, color, and flavor—are determined to a large extent by the arrangement and relative proportions of the muscle fibers, connective tissue, and fat tissue.

Muscle Fibers When we look at a piece of meat, most of what we see are bundles of muscle cells, the fibers that do the moving. A single fiber is very thin, around the thickness of a human hair (a tenth to a hundredth of a millimeter in diameter), but it can be as long as the whole muscle. The muscle fibers are organized in bundles, the larger fibers that we can easily see and tease apart in well-cooked meat. The basic texture of meat, dense and firm, comes from the mass of muscle fibers, which cooking makes denser, dryer, and tougher. And their elongated arrangement accounts for the “grain” of meat. Cut parallel to the bundles and you see them from the side, lined up like the logs of a cabin wall; cut across the bundles and you see just their ends. It’s easier to push fiber bundles apart from each other than to break the bundles themselves, so it’s easier to chew along the direction of the fibers than across them. We usually carve meat across the grain, so that we can chew with the grain. Muscle fibers are small in diameter when the animal is young and its muscles little used. As it grows and exercises, its muscles get stronger by enlarging—not by increasing the number of fibers, but by increasing the number of contractile protein fibrils within the individual fibers. That is, the number of muscle cells stays the same, but they get thicker. The more protein fibrils there are packed together in the cells, the harder it is to cut across them. So the meat of older, well exercised animals is tougher than the meat of young animals.

Connective tissue is the physical harness for all the other tissues in the body, muscle included. It connects individual cells and tissues to each other, thus organizing and coordinating their actions. Invisibly thin layers of connective tissue surround each muscle fiber and hold neighboring fibers together in bundles, then merge to form the large, silver-white sheets that organize fiber bundles into muscles, and the translucent tendons that join muscles to bones. When the fibers contract, they pull this harness of connective tissue with them, and the harness pulls the bones. The more force that a muscle exerts, the more connective tissue it needs for reinforcement, and the stronger the tissue needs to be. So as an animal’s growth and exercise bulk up the muscle fibers, they also bulk up and toughen the connective tissue. Connective tissue includes some living cells, but consists mainly of molecules that the cells secrete into the large spaces between them. The most important of these molecules for the cook are the protein filaments that run throughout the tissue and reinforce it. One, a protein called elastin for its stretchiness, is the main component of blood vessel walls and ligaments, and is especially tough; its cross-links cannot be broken by the heat of cooking. Fortunately there isn’t much of it in most muscle tissue.

The major connective-tissue filament is the protein called collagen, which makes up about a third of all the protein in the animal body, and is concentrated in skin, tendons, and bones. The name comes from the Greek for “glue producing,” because when it’s heated in water, solid, tough collagen partly dissolves into sticky gelatin. So unlike the muscle fibers, which become tougher with cooking, the connective tissue becomes softer. An animal starts out life with a large amount of collagen that’s easily dissolved into gelatin. As it grows and its muscles work, its total collagen supply declines, but the filaments that remain are more highly cross-linked and less soluble in hot water. This is why cooked veal seems gelatinous and tender, mature beef less gelatinous and tougher.

Fat tissue is a special form of connective tissue, one in which some of the cells take on the role of storing energy. Animals form fat tissue in three different parts of the body: just under the skin, where it can provide insulation as well as energy; in well-defined deposits in the body cavity, often around the kidneys, intestine, and heart; and in the connective tissue separating muscles and the bundles within muscles. The term “marbling” is used to describe the pattern of white splotches in the red matrix of muscle.

Tissues and Textures The texture of tender meat is as distinctive and satisfying as its flavor: a “meaty” food is something you can sink your teeth into, dense and substantial, initially resistant to the tooth but soon giving way as it liberates its flavor. Toughness is a resistance to chewing that persists long enough to become unpleasant. Toughness can come from the muscle fibers, the connective tissue surrounding them, and from the lack of marbling fat. Generally, the toughness of a cut of meat is determined by where it comes from in the animal’s body, and by the animal’s age and activity. Get down on all fours and “graze,” and you’ll notice that the neck, shoulders, chest, and front limbs all work hard, while the back is more relaxed. Shoulders and legs are used continually in walking and standing, and include a number of different muscles and their connective-tissue sheaths.

They are therefore relatively tough. The tenderloin is appropriately named because it is a single muscle with little internal connective tissue that runs along the back and gets little action; it’s tender. Bird legs are tougher than breasts for the same reasons; the protein in chicken legs is 5–8% collagen compared to 2% in the breast. Younger animals—veal, lamb, pork, and chicken all come from younger animals than beef does have tenderer muscle fibers because they are smaller and less exercised; and the collagen in their connective tissue is more rapidly and completely converted to gelatin than older, more cross-linked collagen.

Fat contributes to the apparent tenderness of meat in three ways: fat cells interrupt and weaken the sheet of connective tissue and the mass of muscle fibers; fat melts when heated rather than drying out and stiffening as the fibers do; and it lubricates the tissue, helping to separate fiber from fiber. Without much fat, otherwise tender meat becomes compacted, dry, and tough. Beef shoulder muscles contain more connective tissue than the leg muscles, but they also include more fat, and therefore make more succulent dishes.




MUSCLE FIBER TYPES:

MEAT COLOR
Why do chickens have both white and dark meat, and why do the two kinds of meat taste different? Why is veal pale and delicate, beef red and robust? The key is the muscle fiber. There are several different kinds of muscle fiber, each designed for a particular kind of work, and each with its own color and flavor.

White and Red Fibers Animals move in two basic ways. They move suddenly, rapidly, and briefly, for example when a startled pheasant explodes into the air and lands a few hundred yards away. And they move deliberately and persistently, for example when the same pheasant supports its body weight on its legs as it stands and walks; or a steer stands and chews its cud. There are two basic kinds of muscle fibers that execute these movements, the white fibers of pheasant and chicken breasts, and the red fibers of bird and steer legs. The two types differ in many biochemical details, but the most significant difference is the energy supply each uses.

White Muscle Fibers specialize in exerting force rapidly and briefly. They are fueled by a small store of a carbohydrate called glycogen, which is already in the fibers, and is rapidly converted into energy by enzymes right in the cell fluids. White cells use oxygen to burn glycogen, but if necessary they can generate their energy faster than the blood can deliver oxygen. When they do so, a waste product, lactic acid, accumulates until more oxygen arrives. This accumulation of lactic acid limits the cells’ endurance, as does their limited fuel supply. This is why white cells work best in short intermittent bursts with long rest periods in between, during which the lactic acid can be removed and glycogen replaced.

Red Muscle Fibers are used for prolonged efforts. They are fueled primarily by fat, whose metabolism absolutely requires oxygen, and obtain both fat (in the form of fatty acids) and oxygen from the blood. Red fibers are relatively thin, so that fatty acids and oxygen can diffuse into them from the blood more easily. They also contain their own droplets of fat, and the biochemical machinery necessary to convert it into energy. This machinery includes two proteins that give red cells their color.

Myoglobin, a relative of the oxygen-carrying hemoglobin that makes blood red, receives oxygen from the blood, temporarily stores it, and then passes it to the fat-oxidizing proteins. And among the fat oxidizers are the cytochromes, which like hemoglobin and myoglobin contain iron and are dark in color. The greater the oxygen needs of the fiber, and the more it’s exercised, the more myoglobin and cytochromes it will contain. The muscles of young cattle and sheep are typically 0.3% myoglobin by weight and relatively pale, but the muscles of the constantly moving whale, which must store large amounts of oxygen during its prolonged dives, have 25 times more myoglobin in their cells, and are nearly black.

Fiber Proportions White Meat and Dark Meat Because most animal muscles are used for both rapid and slow movements, they contain both white and red muscle fibers, as well as hybrid fibers that combine some characteristics of the other two. The proportions of the different fibers in a given muscle depend on the inherited genetic design for that muscle and the actual patterns of muscle use. Frogs and rabbits, which make quick, sporadic movements and use very few of their skeletal muscles continuously, have very pale flesh consisting mainly of white fast fibers, while the cheek muscles of ruminating, perpetually cud-chewing steers are exclusively red slow fibers.

Chickens and turkeys fly only when startled, run occasionally, and mostly stand and walk; so their breast muscles consist predominantly of white fibers, while their leg muscles are on average half white fibers, half red. The breast muscles of such migratory birds as ducks and pigeons are predominantly red fibers because they’re designed to help the birds fly for hundreds of miles at a time.

Muscle Pigments The principal pigment in meat is the oxygen-storing protein myoglobin, which can assume several different forms and hues depending on its chemical environment. Myoglobin consists of two connected structures: a kind of molecular cage with an iron atom at the center, and an attached protein. When the iron is holding onto a molecule of oxygen, myoglobin is bright red. When the oxygen is pulled away by enzymes in the muscle cell that need it, the myoglobin becomes dark purple. (Similarly, hemoglobin is red in our arteries because it’s fresh from our lungs, and blue in our veins because it has unloaded oxygen into our cells.)

When oxygen manages to rob the iron atom of an electron and then escape, the iron atom loses its ability to hold oxygen at all, has to settle for a water molecule, and the myoglobin becomes brown. Each of these myoglobins the red, the purple, and the brown is present in red meat. Their relative proportions, and so the meat’s appearance, are determined by several factors: the amount of oxygen available, the activity of oxygen-consuming enzymes in the muscle tissue, and the activity of enzymes that can resupply brown myoglobin with an electron, which turns it purple again.

Acidity, temperature, and salt concentration also matter; if any is high enough to destabilize the attached protein, myoglobin is more likely to lose an electron and turn brown. Generally, fresh red meat with active enzyme systems will be red on the surface, where oxygen is abundant, and purple inside, where the little oxygen that diffuses through is consumed by enzymes. When we cut into raw meat or into a rare steak, the initially purple interior quickly “blooms,” or reddens, thanks to its direct exposure to the air. Similarly, vacuum-packed meat appears purple due to the absence of oxygen, and reddens only when removed from the package. The pink color of salt-cured meats comes from yet another alteration of the myoglobin molecule.




Muscle Fibers: The Flavor of Action


Meaty flavor is a combination of mouth-filling taste sensations and a characteristic, rich aroma. Both arise from the proteins and energy-generating machinery of the muscle fibers after they have been broken down into small pieces by the muscle’s enzymes and by the heat of cooking. Some of these pieces single amino acids and short chains of them, sugars, fatty acids, nucleotides, and salts are what stimulate the tongue with sweet, sour, salty, and savory sensations. And when they’re heated, they react with each other to form hundreds of aromatic compounds. In general, well-exercised muscle with a high proportion of red fibers (chicken leg, beef) makes more flavorful meat than less exercised, predominantly white-fibered muscle (chicken breast, veal). Red fibers contain more materials with the potential for generating flavor, in particular fat droplets and fat-like components of the membranes that house the cytochromes. They also have more substances that help break these flavor precursors down into flavorful pieces, including the iron atoms in myoglobin and cytochromes, the oxygen that those molecules hold, and the enzymes that convert fat into energy and recycle the cell’s proteins. This connection between exercise and flavor has been known for a very long time. 

Nearly 200 years ago, Brillat-Savarin made fun of “those gastronomes who pretend to have discovered the special flavor of the leg upon which a sleeping pheasant rests his weight.”

Fat: The Flavor of the Tribe 


The machinery of the red or white muscle fiber is much the same no matter what the animal, because it has the specific job of generating movement. Fat cells, on the other hand, are essentially storage tissue, and any sort of fat-soluble material can end up in them. So the contents of fat tissue vary from species to species, and are also affected by the animal’s diet and resident gastrointestinal microbes. It’s largely the contents of the fat tissue that give beef, lamb, pork, and chicken their distinctive flavors, which are composites of many different kinds of aroma molecules. The fat molecules themselves can be transformed by heat and oxygen into molecules that smell fruity or floral, nutty or “green,” with the relative proportions depending on the nature of the fat. Compounds from forage
plants contribute to the “cowy” flavor of beef. Lambs and sheep store a number of unusual molecules, including branchedchain fatty acids that their livers produce from a compound generated by the microbes in their rumen, and thymol, the same molecule that gives thyme its aroma. 

The “piggy” flavor of pork and gamy flavor of duck are thought to come from intestinal microbes and their fat-soluble products of amino-acid metabolism, while the “sweetness” in pork aroma comes from a kind of molecule that also gives coconut and peach their character (lactones). 


U.S. Beef Quality and Grades Today

Despite the prestige of Prime beef, the current consensus among meat scientists is that fat marbling accounts for no  more than a third of the variation in the overall tenderness, juiciness, and flavor of cooked beef. The other  important factors include breed,exercise and feed, animal age, conditions during slaughter, extent of post-slaughter aging, and storage conditions before sale. Most of these are impossible for the consumer to evaluate, though there is a movement toward store and producer “brands” that may provide greater information about and consistency of production.
Potentially more flavorful beef from older animals can be recognized by its darker color and coarser muscle fibers.
Most graded supermarket beef today is graded “Choice,” with 4–10% fat, or “Select,” with 2–4% fat. Prime beef is now around 10–13% fat. Ground beef, which may be all lean meat or a mixture of lean and fat, ranges from 5 to 30% fat content.

No comments:

Post a Comment